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DETERMINATION OF CRITICAL LOADS RESPONSIBLE FOR THE
DEVELOPMENT OF INITIALLY WIDE CRACKSL

A. A. Kaminskiy

ABSTRACT. Discussion of a problem in the theory of
brittle-fracture cracks, where an elastic body (infinite
plane) is weakened by an initially wide crack. An analysis
of the two-dimensional problem in the theory of elasticity
for an infinite plane containing an incision of arbitrary
shape, with one symmetry axis and one or two cuspidal points
at the contour, is reduced to the solution of two systems
of linear algebraic equations. It is shown that the width
of the initial crack has only a slight effect on the value
of the critical load required to initiate the development
of a crack. This is seen to indicate that the representation

of a crack as a cut of zero width is justified even for rather
wide cracks.

The problem of the theory of cracks associated with brittle fracture is 63%*
considered for the case when the elastic body (infinite plane) is weakened by
an initially extended crack. The investigation of the two-dimensional problem of
the theory of elasticity for an infinite plane weakened by an arbitrary notch
with one axis of symmetry, with one or two cuspidal points at the contour,
subjected to tension "at infinity" is reduced to the solution of two simple
systems of linear algebraic equations.

Two simple examples are investigated in detail following the procedures
in ref. 1, 5-8. It is shown that the extension of the crack has an insignif-
icant effect on the value of the critical load which is necessary to start the
development of the crack. This makes it possible to conclude that the repre-
sentation of the crack in the form of a notch with zero thickness is entirely
Justified even for sufficiently extended cracks.

Section 1. Let us consider the two-dimensional problem of the theory of
elasticity for an infinite plane xOy weakened by a notch I
|

|

n==l

- N . N
Xx= Rlcoscp-{-Xc,,cos(kn— l)cp} y= R[sincp -—Ec,,sin (kn — l)m} (1.1)

n=I1
where R, c, are real parameters, k=1, 2 is the number of cuspidal points at
the contour; O<@< 2.
The contour (1.1) has one (k=1) or two (k=2) cuspidal points at the x axis

Numbers in the margin indicate pagination in the original foreign text.
l .
" We have in mind cracks in which the initial distance between opposite borders

may achieve a substantial wvalue. 1
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when a tensile force p acts at infinity, at an angle o with respect to the x
axis (see figure).

The beundary conditions (ref. 4) in this
2//Aa P//AE case have the form
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The function w(g) transforms the region outsiile the contour (l.l) into the re-
gion inside a unit circle in the plane { and has the form

N
z=m(§)=R(§+ZCnC""’). (1.3)
n=1

Where the coefficients Cn satisfy condition (ref. 2)

o @ =R(1—TQ®, (1.4)
where QN is a polynomial in negative powers of {, all of whose roots lie inside {6&

a unit circle in the plane (.

As in refs. 2, 3, we assume that the function q(g) has no singularities due
to the cuspidal points, while the function §({) has singularities in the form
of simple poles at the points of unit circumference ¥, corresponding to the
cuspidal points at the contour (1.1).

Let us represent ¢(g) by means of the following relationship:

| N . ) (1.5)
o® =Rp % + Xangl—“f‘ :
n=1 . 4
where an_: an + iﬁ,,- \

Following ref. 4, we write the function ¢({) in the following form:

PO =— Py (1.6)
=0



We rewrite the second boundary condition from relationships (1.2) in the
form

—ewo= (1) o)

Comparing the coefficients in front of the same powers of ¢ in the expansions
of both sides of (1.7) we obtain two systems of linear algebraic equations

5 S Cp (1.8)
a,+ }-I (1 — kn) Cnlntp + 2 (1 — kn) AyCntp + —4—- = A,
n=l n=l| :
N—p N—p

Bot B (1 —kn) cuiy— Y (1 — k) Buaro =B, (p=1,2... N).

n=| n=I

(1.9)

In the first and second systems when k=1 and k=2 we have, respectively,

0, p+2 0, p==2;
A= 1 B= 1 . :
{—2— cos2a, p=2 [?sm2a, p=2
0, p>1 {0, p> 1 ‘.
A=1{] B=1{1] _ |
[—2— cos2a, p==1; {7 sin2a, p=1. |

l

. |
Multiplying both sides of (1.7) by 2—;70 I Q\ and integrating over y we

obtain the function \J,r( Q) in closed form

[y
L ,m(f) (1.10)

As an example we consider two simple contours with one or two {65

cuspidal points whose equations for k=1 and k=2 can be expressed in a parametric
form as follows:

Section 2.

b b (2.1)
X R[(2—-b)c05(p+—é—cos2cp]; y=R<bsir1(p—-—2— sin 2¢ ;\
b . b . '
x=R[(2—b)coscp +—3—c053cpJ; y=R(bsm(p—§sm3(p>, :
_ . . " (2.2)



where 0<b<1.

Equations (2.1) and (2.2) represent the contours of the expanded cracks
shown in the figure. By varying the parameter b, which characterizes the form
of the notches (2.1) and (2.2), from O to unity we obtain a rectilinear notch
for b=0 which gradually expands as b is increased and when b=1 the contour (2.1)
transforms into a hypocycloid with 3 cuspidal points while the contour (2.2)
transforms into an astroid.

The functions which produce a conformal transformation of the regions ex-
terior to contours (2.1) and (2.2) into the interior of a unit circle are
written in the form

- (2.3)
m(c)=R[z+<1—b)c—‘+ c*'*’], (k=1

|
cﬂ,‘ (k=2. "

wle =

w(§)=R[c+(1—b)§“+
(2.k4)

Solving systems (1.8) and (1.9) for the considered cases we find express-
: . 9' (9
ions for the function Q)= -+
B (1 —b—2e%% ;4 b | (2.5)

o _ P 1\
CO=ft=neri+n - &=

Cp =D b@—b) o
P =7 O—E—-HE+b (k_2.)f,.\ (2.6)

Here ‘ ’
D =6(3 + b) cos 2a + 6i (3 — ) sin 2a — (1 — b) (3 + )2,

Section 3. It follows from references 5 and 7 that the principal part
of the stress tensor components in the neighborhood of the cuspidal points for
the considered contours may be represented in the form

0, = —1 [k1<5cos—5-—cos%ﬁ> +kz<—-5Siﬂ~g— + 35iﬂ%5>}+ 0 (1)
y /

4Ver
o B 3
Gﬁ——«'4—l7-.—-2_r[k1<3c03'—2“+cos—2“ﬁ)— / (3'1)




— 3k, (sin% -} sin% ﬁ)] -+ 0 (D);

1 . . \
T3 = Ve [kl(sm % 4 sin %6)—}— k, (cos—g— 4 3 cos -g— [3)] +0q). .

Here r, B are polar coordinates; k;; k, are the stress intensity coefficients /66

which are determined from the relationship {ref. 6)

& ——é——cos-t—}—-—k2 iz—sin—ﬁ-—}—O(l)=4{Re:(I)(1-‘L—§,), (3.2)
r 2 r 2 '

where ({, assumes the following form for contours (2.1) and (2.2)

_ (3.3)
. —F &
R<1+-2-)

—_— 8 i

Substituting the functions (2.5) and (2.6) into (3.2) and taking into

account expression (3.3) and (3.4) we obtain the coefficients of stress intensity
for the extended cracks (2.1) and (2.2)

, (3.5)
R . '
k1=p(1—cos2a)1/m, ky == psin 2a 2—5—_——17, (k= 1)
3 —b%) — 3 cos 2 R 3sin2a. /TR .. N
b= ( l/f - p 25N 1/f —
1= 3—5 a0’ =P335 | gTn ®=2 (5.6)

Tn the limiting cases when b=0 (rectilinear notch) and b=1 (hypocycloid)
we find k,; and k, from equations (3.5) and (3.6) which coincides with the re-

sults obtained earlier in (ref. 5—8). Following references 5 and 8 we shall
assume that the initial propagation of cracks takes place from the apex of the

crack along a line, in which the normal tensile stresses reach a maximum per-
missible wvalue.



The value of the critical load p:pcr which is necessgary for the crack to

go into a state of mobile equilibrium

ig obtained from the relationships
(refs. 5, 6)
lim]/r—og———-ift—: (3.7)
r-»0
lim /7 (%‘%”—\) =0,
=P, (5.8)

where K is the coupling modulus (ref. l); By 1is the angle which determines the
initial direction of crack propagation.

By using the approach analogous to that of reference 5> we obtain the follow-
ing expression from (3.1), (3.7), (3.8)

cr 11 . ~ ~ L .
cos’%—"— ( klcos%*— - 3k2smP21) o
where ; b~ b \
k1='71; kg=’p—2'n \\\

When O<a<m/2 it follows from condition (3.8) that

_ 6n* 41 —V8n2+ 1
B, = _2arcsml/ 20+ 1) , (3.10)

where n=k,/k,.

We can see from equation (3.10) that for an extended crack (2.1) the angle
By does not depend on the parameter b and will be exactly the same as in the
case when the crack has the form of a rectilinear notch.

Let us determine the critical load =P, for the case when the tensile forces

are directed along the y axis.

In this case it follows from expression (3.10) B*=O and from (5.9) we find

Pop =

—5—~—K~§—.\‘ ' (3.11)
' 'k1' \

From relationships (3.5), (3.6), (3.11) we find

-



[ 0o

pcr=§l/ 1/1—%1, (k= 1; (5.12)

K./ 6—_% —5 ' (3.13)
pcr=_n—l/f'w (“?)“T”)’ (&= 2),

where L is the half-length of the crack (see figure); and when k=1, L=R(2—b);
when k=2L=2/3R(3-b).

It follows from equations (3.12) and (3.13) that as the crack extends,

i.e. as the parameter b increases in value from O to unity, the value of the
critical load decreases insignif antly compared with Griffiths' load.

The maximum decrease in Por does not exceed 14 percent for cracks with

contour (2.1) and 8 percent for cracks with cantour (2.2).

REFERENCES

Barenblatt, G. I., The Mathematical Theory of Equilibrium Cracks Which
Form During Brittle Fracture (Matematicheskaya teoriya ravnovesnykh
treshchin, obrazuyushchikhsya khrupkom nazrushenii) Prikladnaya
Mekhanika i Tekhnicheskaya Fizika (PMIF) No. 4., 1961.

Kaminskiy, A. A. On Critical Loads Which Initiate the Development of
Cracks Near a Hole (0O kriticheskikh nagruzkakh, vyzyvayushchikh
nachalo razvitiya treshchin vozle otverstiya) MIT, No. 4., 1966.

Kaminskiy, A. A. On the Critical Loads for Regions Weakended by Holes

with Cracks, Collected Works "Stress Concentration" (O kriticheskikh
nagruzkakh dlya oblastey, oslablennykh otverstiyami s treshchinami.

Sb. "Kontsentratsiya napryazheniy") Kiev, Izd-vo "Naukova Dumka', 1965.

Muskhelishvili, N. I. Some Basic Problems in the Mathematical Theory of
Elasticity (Nekotoryye osnovnyye zadachi matematicheskoy teorii
uprugosti) Izd-vo AN SSSR, 1954.

Panasyuk, V. V. Berezhnitskiy, L. T., and Kovchik, S. Ye. On Propagation
of an Arbitrarily Oriented Rectilinear Crack During the Tension of a
Plate (O raspredelenii proizvol'no oriyentirovannoy pryamolineynoy
treshchiny pri rastyazhenii plastiny) Prikladnaya Mekhanika, Vol. 1.,
No. 2., 1965.

Panasyuk, V. V. On the Failure of Brittle Bodies in a Two Dimensional
State of Stress (0O razrushenii khrupkikh tel pri ploskom napryazhennom
sostoyanii) Prikladnaya Mekhanika, Vol 1., No. 9., 1965,

51, Paris, Erdogan. Stress Concentration Factors at the Apex of the
Crack During Two-Dimensional Tension and Flexure of Plates (Kontsentra-
tsii napryazheniy u vershiny treshchiny pri ploskom rastyazhenii i



NASA TT F-10,898

izgibe plastin) Tp. Amerikanskogo ob-va Inzh-Mekhanikov, E, 29, No. 2,
1962.
8. Erdogan, Sikh. On the Development of Cracks in Plates Under the Action of
Longitudinal and Transverse Forces (O razvitii treshchin v plastinakh
pod deystviyem prodol'noy i poperechnoy nagruzok, SAE, E, 85, No. L,
Transactions of the American Society of Mechanical Engineers, 1963.

Translated for the National Aeronautics and Space Administration
by John F. Holman and Co. Inc.

WASHINGTON, D.C. 20037

NASw-1495



